
DISPLAY_CONTROLLER (3.0.1)

Display controller library
The XMOS display controller library provides the service of removing the real-time constraint of maintain-
ing the LCDs line buffer from the application and provides a managed frame buffering service. It does
this by using an SDRAM as a storage for the frame buffers.

Features

• Asynchronous non-blocking interface for modifying frame buffers,
• User configurable number of frame buffers.

Components

• Display controller

Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

Display controller server, 2 frame buffers of
480x272 pixels

0 0 0 ~10.8K 0

Display controller server, 4 frame buffers of
480x272 pixels

0 0 0 ~10.9K 0

Display controller server, 8 frame buffers of
480x272 pixels

0 0 0 ~11.0K 0

Software version and dependencies

This document pertains to version 3.0.1 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_sdram (>=3.0.0) • lib_lcd (>=3.0.0)

Related application notes

The following application notes use this library:

• AN00169 - Using the display controller library

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

1 Hardware characteristics

The display controller requires use of an SDRAM and an LCD. The respective hardware requirements of
these are covered in:

• SDRAM library (see XM-004440-PC),
• LCD library (see XM-004440-PC).

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006986

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide

DISPLAY_CONTROLLER (3.0.1)

2 Display Controller API

All display controller functions can be accessed via the display_controller.h header:

#include <display_controller.h>

You will also have to add lib_display_controller to the USED_MODULES field of your application Make-
file.

The display controller server and client are instantiated as parallel tasks that run in a par statement. The
client (application on most cases) can connect via a streaming channel.

The display controller uses distributed tasks to implement bi-directional asynchronous decoupling of the
commands between the application(client) and the display controller. This means that the asynchronous
command buffering is handled by the interfaces:

interface app_to_cmd_buffer_i
interface cmd_buffer_to_dc_i
interface dc_to_res_buf_i
interface res_buf_to_app_i

There is one other interface that connects to the application, the vertical synchronization interface. This
interface allows the application to know when the frame is at the start of a new scan, i.e. line zero is
about to be written.

As the display controller uses some of the SDRAM, the memory address allocator is used to allocate an
amount of the SDRAM to the display controller. See (... TODO) to find out more about how to use the
memory address allocator.

For example, the following code instantiates a display controller server and connects an application to it
(the SDRAM and LCD declarations has been shortened for simplicity):

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

on tile[1] : out buffered port:32 lcd_rgb = XS1_PORT_16B;
on tile[1] : out port lcd_clk = XS1_PORT_1I;
on tile[1] : out port ?lcd_data_enabled = XS1_PORT_1L;
on tile[1] : out buffered port:32 ?lcd_h_sync = XS1_PORT_1J;
on tile[1] : out port ?lcd_v_sync = XS1_PORT_1K;
on tile[1] : clock lcd_cb = XS1_CLKBLK_1;

on tile[1] : out buffered port:32 sdram_dq_ah = XS1_PORT_16A;
on tile[1] : out buffered port:32 sdram_cas = XS1_PORT_1B;
on tile[1] : out buffered port:32 sdram_ras = XS1_PORT_1G;
on tile[1] : out buffered port:8 sdram_we = XS1_PORT_1C;
on tile[1] : out port sdram_clk = XS1_PORT_1F;
on tile[1] : clock sdram_cb = XS1_CLKBLK_2;

int main() {
interface app_to_cmd_buffer_i app_to_cmd_buffer;
interface cmd_buffer_to_dc_i cmd_buffer_to_dc;

interface dc_to_res_buf_i dc_to_res_buf;
interface res_buf_to_app_i res_buf_to_app;

interface dc_vsync_interface_i vsync_interface;

interface memory_address_allocator_i to_memory_alloc[1];

streaming chan c_sdram[2], c_lcd;

par {
on tile[1]: [[distribute]] memory_address_allocator(1, to_memory_alloc, 0, 1024*1024*8);

on tile[1]: [[distribute]] command_buffer(app_to_cmd_buffer, cmd_buffer_to_dc);
on tile[1]: display_controller(

cmd_buffer_to_dc, dc_to_res_buf, vsync_interface,
DISPLAY_CONTROLLER_IMAGE_COUNT,
LCD_HEIGHT,
LCD_WIDTH,
LCD_BYTES_PER_PIXEL,
to_memory_alloc[0], c_sdram[0], c_sdram[1], c_lcd);

on tile[1]: [[distribute]] response_buffer(dc_to_res_buf, res_buf_to_app);

on tile[1]: app(app_to_cmd_buffer, res_buf_to_app, vsync_interface);

on tile[1]:lcd_server(c_lcd,...);
on tile[1]:sdram_server(c_sdram, 2, ...);

}
return 0;

}

Note that the client application, display controller, LCD server and SDRAM server must be on the same
tile as the line buffers are transfered by moving pointers from one task to another.

The display controller library uses movable pointers to pass buffers between the client and the server.
This means that when the client passes a buffer to the display controller the client cannot access that
buffer while the server is processing the command . To handle this the client sends commands using
display_controller_read and display_controller_write, both of which take a movable pointer
as an argument. To return the pointer to the client, the client must call the interface from the display
controller (res_buf_to_app_i) using the pop() method which will take back ownership of the pointer when
the display controller server is finished processing the command.

2.1 Client/Server model

The display controller server must be instantiated at the same level as its clients. For example:

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

on tile[1]: display_controller(
cmd_buffer_to_dc, dc_to_res_buf, vsync_interface,
DISPLAY_CONTROLLER_IMAGE_COUNT,
LCD_HEIGHT,
LCD_WIDTH,
LCD_BYTES_PER_PIXEL,
to_memory_alloc[0], c_sdram[0], c_sdram[1], c_lcd);

on tile[1]: app(app_to_cmd_buffer, res_buf_to_app, vsync_interface);

2.2 Command buffering

The display controller server implements a single slot command buffer. This means that the client can
queue up a command to the display controller server through calls to display_controller_read
or display_controller_write. A successful call to display_controller_read or
display_controller_write will return 0 and issue the command to the command buffer. When
the command buffer is full then a call to sdram_read or sdram_write will return 1 and not issue the
command. Commands are completed (i.e. a slot is freed) when sdram_complete returns. Commands
are processed as in a first in first out ordering.

2.3 Initialization

The display controller will start by displaying the image with handle 0. There is no need to initialize
this frame as it will be set to all black (0x0). The application should then begin by writing to any other
registered frames (image handle 1 and up).

2.4 Safety through the use of movable pointers

The API makes use of movable pointers to aid correct multi-threaded memory handling. See1 to know
more about movable pointers.

1https://www.xmos.com/download/public/XMOS-Programming-Guide-(documentation)(E).pdf

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006986

https://www.xmos.com/download/public/XMOS-Programming-Guide-(documentation)(E).pdf

DISPLAY_CONTROLLER (3.0.1)

3 API

Function display_controller

Description The display controller server task.

Type void
display_controller(client interface cmd_buffer_to_dc_i to_dc,

client interface dc_to_res_buf_i from_dc,
server interface dc_vsync_interface_i vsync,
static const unsigned num_frame_buffers,
static const unsigned height,
static const unsigned width,
static const unsigned bytes_per_pixel,
client interface memory_address_allocator_i mem_alloc,
streaming chanend c_sdram_lcd,
streaming chanend c_sdram_client,
streaming chanend c_lcd)

Parameters to_dc The interface for the command buffering to send commands to the dis-
play controller

from_dc The interface for thedisplay controller to send responses to the com-
mand buffering

vsync The interface used to indicate when a vertical restart has happened

num_frame_buffers
The number of frame bufferes required by the application

height The width of each of the frame buffers(they are all be the same)

width The height of each of the frame buffers(they are all be the same)

bytes_per_pixel
The bytes per pixel

mem_alloc The interface to the memory address allocator

c_sdram_lcdThe
streaming channel to the SDRAM server (high priority)

c_sdram_clientThe
streaming channel to the SDRAM server (low priority)

c_lcd The streaming channel to the LCD server

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

Function display_controller_read

Description This issues a read command to the display controller.

Type void
display_controller_read(

client interface app_to_cmd_buffer_i app_to_cmd_buf,
unsigned *movable buffer,
unsigned image_no,
unsigned line,
unsigned word_count,
unsigned word_offset)

Parameters app_to_cmd_buf
The interface for the application to send commands to the command
buffering.

buffer A pointer to an array where the data should be saved to.

image_no The image number to be read from.

line The line number of the image to be read from.

word_count
The number of words to be read.

word_offset
The number of words from the begining of the line to begin the read.

Function display_controller_write

Description This issues a write command to the display controller.

Type void
display_controller_write(

client interface app_to_cmd_buffer_i app_to_cmd_buf,
unsigned *movable buffer,
unsigned image_no,
unsigned line,
unsigned word_count,
unsigned word_offset)

Continued on next page

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

Parameters app_to_cmd_buf
The interface for the application to send commands to the command
buffering.

buffer A pointer to an array where the data should be read from.

image_no The image number to be written to.

line The line number of the image to be written to.

word_count
The number of words to be written.

word_offset
The number of words from the begining of the line to begin the write.

Function display_controller_frame_buffer_commit

Description This schedules the given image to be displayed on the LCD at the next vertical refresh.

Type void
display_controller_frame_buffer_commit(

client interface app_to_cmd_buffer_i from_dc,
unsigned image_no)

Parameters from_app The interface for the application to send commands to the command
buffering

image_no The image number to be commited to the display.

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006986

DISPLAY_CONTROLLER (3.0.1)

APPENDIX B - Display controller library change log

B.1 3.0.1

• Update to source code license and copyright

B.2 3.0.0

• Consolidated version, major rework from previous display controller components
• Changes to dependencies:

– lib_lcd: Added dependency 3.0.0
– lib_sdram: Added dependency 3.0.0

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006986

	Display controller library
	Hardware characteristics
	Display Controller API
	Client/Server model
	Command buffering
	Initialization
	Safety through the use of movable pointers

	API
	Known Issues
	Display controller library change log
	3.0.1
	3.0.0

